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Synchronization of stochastic phase-coupled oscillators is known to occur but difficult to characterize be-
cause sufficiently complete analytic work is not yet within our reach, and thorough numerical description
usually defies all resources. We present a discrete model that is sufficiently simple to be characterized in
meaningful detail. In the mean-field limit, the model exhibits a supercritical Hopf bifurcation and global
oscillatory behavior as coupling crosses a critical value. When coupling between units is strictly local, the
model undergoes a continuous phase transition that we characterize numerically using finite-size scaling
analysis. In particular, we explicitly rule out multistability and show that the onset of global synchrony is
marked by signatures of the XY universality class. Our numerical results cover dimensions d=2, 3, 4, and 5 and
lead to the appropriate XY classical exponents 8 and v, a lower critical dimension d;.=2, and an upper critical

dimension d,.=4.
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I. INTRODUCTION

The role of dissipative structures and self-organization in
systems far from equilibrium in the description of real and
observable physical phenomena has been undisputed since
the experiments with the Belusov-Zhabotinsky reactions in
the early 1960s. The breaking of time translational symmetry
has since become a central and typical theme in the analysis
of nonlinear nonequilibrium systems. It is somewhat surpris-
ing that in the later studies of spatially distributed systems,
most of the interest shifted to pattern-forming instabilities,
and little attention was devoted to the phenomenon of bulk
oscillation and the required spatial frequency and phase syn-
chronization, especially in view of the intense interest gen-
erated in the scientific and even broader community by the
emergence of phase synchronization in populations of glo-
bally coupled phase oscillators [1]. The synchronous firing of
fireflies is one of the most visible and spectacular examples
of phase synchronization. Because intrinsically oscillating
units with slightly different eigenfrequencies underlie the
macroscopic behavior of an extensive range of biological,
chemical, and physical systems, a great deal of literature has
focused on the mathematical principles governing the com-
petition between individual oscillatory tendencies and syn-
chronous cooperation [2-4]. While most studies have fo-
cused on globally coupled units, leading to a mature
understanding of the mean-field behavior of several models,
relatively little work has examined populations of oscillators
in the locally coupled regime [5-7]. In fact, models of lo-
cally coupled oscillators typically involve a prohibitively
large collection of interdependent nonlinear differential
equations, thus preventing any extensive characterization of
the phase transition to phase synchrony. Further inclusion of
stochastic fluctuations in such models typically renders them
computationally and analytically intractable for even a mod-
est number of units. As a result, the description of emergent
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synchrony has largely been limited to small-scale and/or glo-
bally coupled deterministic systems [8,9], despite the fact
that the dynamics of the physical systems in question likely
reflect a combination of finite-range forces and stochasticity.
Two recent studies by Risler et al. [10,11] represent notable
exceptions to this trend. Using an elegant renormalization-
group approach, they provide analytical evidence that iden-
tical locally coupled noisy oscillators belong to the XY uni-
versality class, though to date there had been no empirical
verification, numerical or otherwise, of their predictions.
The difficulty with existing models of locally coupled os-
cillators is that each is typically described by a nonlinear
differential equation, and the resulting systems of coupled
equations are computationally extravagant, especially when
stochastic components are also included. Here we introduce
a far more tractable model consisting of identical and dis-
crete phase-coupled oscillators whose simple structure ren-
ders it amenable to extensive numerical study. The use of
such minimal models is common in statistical physics, where
microscopic details can often be disregarded in favor of phe-
nomenological macroscopic variables. As Landau theory
[12] reminds us, macroscopically observable changes (those
that occur on length and time scales encompassing a mag-
nificently large number of degrees of freedom) occur without
reference to microscopic specifics. In a sense, the distin-
guishing features of even highly diverse systems become ir-
relevant for the description of cooperative behavior at the
level of a phase transition; instead, the underlying statistical
similarities give rise to classes of universal behavior whose
members differ greatly at the microscopic level. In the spirit
of this universality, simple toy models have been devised in
the hopes of capturing the essential qualitative features of
phase transitions without concern for the microscopic struc-
ture of the problem. With this in mind, we construct the
simplest model that exhibits global phase synchrony and
contains the physical ingredients listed above, namely sto-
chastic variation within individual units and short-ranged in-
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FIG. 1. Single three-state unit with generic transition rates g.
From [13].

teractions [13]. The simplicity of the model allows for rela-
tively fast numerical simulation and thus an extensive
description of the phase transition in question. An abbrevi-
ated version of our principal results can be found in [13].
There we characterized the universality class of the transi-
tion, including the critical exponents and the lower and upper
critical dimensions. Here we present considerably more de-
tail as well as additional results to support our characteriza-
tion.

The organization of the paper is as follows. In Sec. II, we
introduce our description of a single unit as well as the cou-
pling scheme between units. Section III presents the linear
stability analysis of the mean-field limit, and Sec. IV con-
tains the finite-size scaling analysis that unveils the critical
behavior of the locally coupled model. We conclude with a
summary in Sec. V.

II. THREE-STATE MODEL

Our starting point is a three-state unit [14] governed by
transition rates g, as shown in Fig. 1. We interpret the state
designation as a generalized (discrete) phase, and the transi-
tions between states, which we construct to be unidirectional,
as a phase change and thus an oscillation of sorts. The prob-
ability of going from the current state i to state i+1 in an
infinitesimal time dr is gdt, with i=1,2,3 modulo 3. For a
single unit, g is simply a constant that sets the oscillator’s
intrinsic frequency; for many units coupled together, we will
allow g to depend on the neighboring units in the spatial
grid, thereby coupling neighboring phases. The choice of
coupling, specified below, is not unique.

For a single unit we write the linear evolution equation

2 p() = MP(). (1)
ot
where
P (1)
P(t)=| Py(1) |, (2)
P5(1)

P(1) is the probability of being in state i at time ¢, and
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TABLE 1. Transition rates in one dimension.

Neighbors Transition rate
i—1,i-1 g
i-1,i g exp(-a/2)
i—1,i+1 gexp(al2)
i,i—1 g exp(—al2)
i, i g exp(—a)
i, i+1 g
i+1,i-1 g explal2)
i+l i g
i+1,i+1 g exp(a)

-g& 0 ¢

M= g -g 0 [ (3)
0 g -g

The system clearly reaches a steady state for PT:P;:P;
=1/3. The transitions 1 —2, 2—3, 3 — 1 occur with a rough
periodicity determined by g. The time evolution of our
simple model thus qualitatively resembles that of the
discretized phase of a generic noisy oscillator.

We are interested in the behavior that emerges when in-
dividual units are coupled to one another by allowing the
transition probability of a given unit to depend on the states
of the unit’s nearest neighbors in the spatial grid. The phase
at a given site is compared with those of its neighbors, and
the phase of the given site is adjusted so as to facilitate phase
coherence. The expectation is to capture the physical nature
of synchronization. It is further expected that within certain
restrictions (e.g., the coupling must surely be nonlinear), the
specific nature of the coupling is not important (in other
words, we expect universality) so long as we ultimately
observe a transition to global synchrony at some finite value
of the coupling parameter. We settle upon a particular expo-
nential form below. As we shall see, linear stability analysis
for this choice confirms the existence of a Hopf bifurcation
in the mean-field limit. Upon further analysis, the Hopf
bifurcation is shown to be supercritical.

More concretely, we specify that each unit may transition
to the state ahead or remain in its current state depending on
the states of its nearest neighbors. For unit u, which we take
to be in state i, we choose the transition rate to state j as
follows:

M} Siinr. 4)

gij=geXP[ 2d j

where a is the coupling parameter, 6 is the Kronecker delta,
N, is the number of nearest neighbors in state k, and 24 is the
total number of nearest neighbors in d dimensions. The tran-
sition rate is thus determined by the number of nearest neigh-
bors of unit u that are one state ahead and in the same state
as unit u. Table I shows the explicit transition rates in one
dimension. While these rates are somewhat distorted by their
assumed independence of the number of nearest neighbors in
state i—1 (e.g., in one dimension the transition rate from state
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i to state i+1 is the same if both nearest neighbors are in
state i—1 and if one is in state i and the other in i+1), the
form (4) is simplified by this assumption and, as we shall
see, does lead to synchronization. Note also that an equally
simple model might posit a coupling that depends on N,_,
the number of units “behind” the unit in question, rather than
N;,1, or a more complex model could be constructed that
depends on both. We settle on our choice (4) because the
phase transition we seek occurs for a smaller value of the
coupling constant a, and therefore numerical simulations can
be run with larger time steps. We have also explored cou-
pling with a sigmoidal function, which shows similar quali-
tative behavior (that is, a supercritical Hopf bifurcation in the
mean-field limit and an apparent synchronization transition
in locally coupled simulations), but this again occurs for a
higher value of a, making simulations more cumbersome.
We stress again that universality suggests that such micro-
scopic details should not substantially alter the qualitative
picture of the phase transition as long as the coupling is
sufficiently nonlinear and favors synchronization.

III. MEAN-FIELD THEORY

To test for the emergence of global synchrony, we first
consider a mean-field version of the model, that is, one in
which each unit is coupled to all other units. In the large-N
limit with all-to-all coupling, we write

gij=g expla(P;— P)]9; 11, (5)

where P, is the (ensemble) probability of being in state k.
Note that with all-to-all coupling, g;; does not depend on the
location of the unit within the lattice. Note also that there is
an inherent assumption that we can replace N;/N with P,
that is, we are assuming that NV, the total number of units, is
large enough that N,/N serves as a good estimation of the
ensemble probability P,. With this simplification, we arrive
at an equation for the mean field P,

£ () = MPOIP(D), (6)
where
—812 0 831
MIP()]=| g -85 0 | (7)
0 823 — 831

We have explicitly noted the dependence of M on P(¢) since
each of the matrix elements g;; depends on the evolving
probabilities. Equation (6) is thus a highly nonlinear
equation.

The normalization condition P+ P,+P3;=1 allows us to
eliminate P3 and obtain a closed set of equations for P, and
P,. We can further characterize the mean-field solutions us-
ing standard linear stability analysis. Specifically, we linear-
ize about the fixed point (PT,P;)=(1 /3,1/3) and obtain the
Jacobian J evaluated at (PT,P;),
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FIG. 2. (Color online) Simulations with 5000 globally coupled
units (bottom panel) agree well with the numerical solution of the
mean-field equations (top panel). As predicted by linearization, a
Hopf bifurcation occurs near a=1.5.

J=<ag—2g -g ) @)
g ag-g

The eigenvalues of J characterize the fixed point, and they

are given by

N =2Q2a-3+i\3). (9)

0 109

Both cross the imaginary axis at a=1.5, indicative of a Hopf
bifurcation at this value. Hence, as a increases, the mean
field undergoes a qualitative change at a=1.5 from disorder
(P,=P,=P5) to global oscillations, and the desired global
synchrony emerges.

The predictions of the linearization can be verified by
numerically solving the mean-field equations (6). In turn,
these solutions agree well with direct simulations of the mul-
tiple unit model characterized by Eq. (4) if we consider all-
to-all coupling rather than merely nearest-neighbor coupling
(Fig. 2). As such, the mean-field equations accurately capture
the behavior of the nearest-neighbor model in the high (spa-
tial) dimensional limit.

Furthermore, the Hopf bifurcation seen in our mean-field
model can be shown to be supercritical. Such an analytical
argument is formally related to the structure of the normal
form for the Hopf bifurcation. Practically speaking, one must
consider the sign of the first Lyapunov coefficient at the bi-
furcation point (a,=1.5). Following [15], we transform our
two-dimensional nonlinear equation (6) to a single equation
for the complex variable z valid for small @=a—a,. The form
of the equation is given by

z=Na)z+ f(z,7, a), (10)

where f(z,z", @) is an O(|z|*) smooth function of z, z¥, and a,
and N(a) is an a-dependent eigenvalue of the linearized
Jacobian (8) given above. We achieve such a transformation
by first finding complex eigenvectors p and g given by
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J(0)g=N\(0)g, J(0)p=\(0)"p, (11)

with J(0) the Jacobian evaluated at a=a,=1.5. One then nor-
malizes (p,q), where brackets in this context represent the
standard complex scalar product. Explicitly, we obtain

((1+i\/§) )
p: —’,_,1 s
(3-ivV3)

q=<%(—l+iv§),l>. (12)

An equation for z of the desired form (10) is formally
obtained at a=0 as

=N0)z+(p,F(zqg+2'q",0)), (13)

where F(x,a) is related to our original dynamical system,
i.e.,

d
EP(t) =J(a)P(t) + F[P(1),a]. (14)
From this, we may obtain the first Lyapunov coefficient L, as
1
Ly = Re(iff11 + @of21), (15)
2wy
where

w(z) = det J|a=aC = (3 - 3(10 + 3613), (16)

and with f;; given by the formal Taylor expansion of f,

. . 1
[0 = Fg + 21700 = S o f e
k+(=2 ™-b-

(17)

Specifically, for a=0 we write f as an explicit function of a,
and the complex numbers h=3i+3 and c=i+3,

f(z,27,0) = — (exp(— %iac[b*z -(3i- 2\’§)zf])

1
3b

. s 3.2 .
X3 =2i(1+3z+3z")exp El\r’3aczT + (¢ - 6iz
—-3¢"zNexp Eac(ic z+7") | = (6iz+c —3cz")

=
Xexp{Sac<Z+(l+§i)ZT)]}), (18)

and upon Taylor expanding we get

3a? .
Re{ bcff wo(15-33 + acb")}

Ly(a,) = > (19)
2w
As previously noted, a.=1.5, leading to
Li(1.5)=-11.69 <0, (20)

indicative of a supercritical Hopf bifurcation to a unique,
stable limit cycle as a eclipses a,.
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In what follows, we characterize the breakdown of the
mean-field description as spatial dimension is decreased, and
characterize the phase transitions observed with nearest-
neighbor coupling.

IV. CRITICAL BEHAVIOR OF THE LOCALLY
COUPLED MODEL

With a firm understanding of the mean-field model, we
now follow with a study of the locally coupled model. We
perform simulations in continuous time on d-dimensional cu-
bic lattices of various sizes. For all simulations, we imple-
ment periodic boundary conditions. Time steps dt are taken
to be 10 to 100 times smaller than the fastest possible local
average transition rate, that is, dr<<e™ (we set g=1 in our
simulations). This estimate is actually quite conservative,
particularly because the fastest possible transition corre-
sponds to a single unit in state i with all 2d nearest neighbors
in state i+ 1, a scenario that certainly does not dominate the
macroscopic dynamics. We have ascertained that differences
between these simulations and others run at much smaller
time steps (500-1000 times smaller than ¢™) are very small.
All simulations were run until an apparent steady state was
reached. Furthermore, we start all simulations from random
initial conditions, and we calculate statistics based on 100
independent trials. Although the simplicity of the model al-
lows for efficient numerical simulation, our results neverthe-
less represent a modest computational achievement; simula-
tions required approximately 5 weeks on a 28-node dual
processor cluster.

To characterize the emergence of phase synchrony, we
introduce the order parameter [8]

21

N
r=(R), R=—|3 e
N|io
Here ¢ is a discrete phase, taken to be 27r(k—1)/3 for state
ke{1,2,3} at site j. The brackets represent an average over
time in the steady state and an average over all independent
trials. A nonzero value of r in the thermodynamic limit sig-
nifies the presence of synchrony. We also make use of the
corresponding generalized susceptibility

x=LURY - (R)*]. (22)

We begin by considering the model in two spatial dimen-
sions. Here, as shown in Fig. 3, we do not see the emergence
of global oscillatory behavior. Instead, we observe intermit-
tent oscillations (for very large values of a) that decrease
drastically with increasing system size. In fact, as depicted in
Fig. 4, r approaches zero in the thermodynamic limit, even
for very large values of a. We conclude that the phase tran-
sition to synchrony cannot occur for d=2. Interestingly,
snapshots of the system reveal increased spatial clustering as
a is increased as well as the presence of defect structures,
perhaps indicative of Kosterlitz-Thouless-type phenomena
(Fig. 5) [12]. Further studies along these lines are underway.

In contrast to the d=2 case, which serves as the lower
critical dimension, a clear thermodynamic-like phase transi-
tion occurs in three spatial dimensions. We see the emer-
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FIG. 3. (Color online) Absence of synchronization in 2D. Top
left: a=1.5. Top right: a=2.5. Bottom left: a=3.5. Bottom right:
a=4.5. L=100 for all plots. Even for very large values of the cou-
pling, highly synchronous oscillatory behavior is not present. As
discussed in the text and shown in the next figure, the intermittent
oscillations apparent for high values of a result from finite-size
effects.

gence of global oscillatory behavior, which persists in the
limit of large system size, as a increases past a critical value
a. (Figs. 6 and 7). This is consistent with the predictions of
the mean-field theory. For a <a,, r approaches zero as sys-
tem size is increased, and a disordered phase persists in the
thermodynamic limit. As expected, for a > a, the steady-state
dynamics of P; and P, exhibit smooth temporal oscillations
(see the lower insets in Fig. 7) similar to the mean-field case
beyond the Hopf bifurcation point. In addition, Fig. 7 shows
the behavior of the order parameter as a is increased for the
largest system studied (L=280); the upper left inset shows the

0
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. h ° . “*“

- 10} . SRR 1
o T A * . a=2.0
o K A g=2 5
A @ a=3.0
AN wa=35
A" o a=4.0
x 0 a=4.5|

_o
10 : :
107 107"
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FIG. 4. Log-log plot of r vs L™! for d=2. The order parameter r
tends to O as system size increases, verifying the absence of a tran-
sition in two dimensions. Even for large values of the coupling,
synchronous oscillations die away in the limit of infinite system
size.
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FIG. 5. Snapshots of the system in d=2 are shown for a=1, 2.5,
4.5, and 6.5. Upon close inspection, one can discern vortexlike
structures, particularly for the higher values of a. The three shades
of gray represent units in the three possible states.

peak in y at a=2.345+0.005, thus providing an estimate of
the critical point a. where fluctuations are largest. Strictly
speaking, we must extrapolate this peak to obtain a result in
the limit of infinite system size, but we see no change in the
value a, at which the peak occurs as system size is increased
beyond L=40, indicating that finite-size effects are small in
the determination of a, in systems beyond this size. At any
rate, such finite-size effects are within the range of our esti-
mation. We tried to apply the Binder cumulant crossing
method [16] for determining a, more precisely, but residual
finite-size effects and statistical uncertainties in the data pre-
vent us from determining the crossing point with more pre-
cision than that stated above. In any case, we are only inter-
ested in determining the critical point with sufficient
accuracy to determine the universality class of the transition.
For this, as we show below, our current estimation suffices in

#* 80

1 0
- 10 't 4
RS v a=2.3
JEE vk g=0 325
©we =2 375
; v g=2.4
e a=D 425
107 107"

L—1

FIG. 6. Log-log plots of r vs L™! for d=3. For a> a,, the order
parameter r approaches a finite value, even as the system size in-
creases indefinitely. For a <a,., r approaches zero in the thermody-
namic limit.
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FIG. 7. (Color online) Onset of synchronization in d=3. Global
oscillatory behavior emerges as a is increased beyond a,, as indi-
cated by the increasing value of r. The system size is L=80. Upper
left inset: Fluctuations peak near the critical point, giving an esti-
mation of a.=2.345+0.005. Right insets: P; and P, undergo
smooth temporal oscillations for large a (upper right), while a lower
value of a decreases temporal coherence (lower left).

three dimensions as well as in higher dimensions. In addi-
tion, we note that the transition to synchrony appears to be a
smooth, second-order phase transition. To rule out potential
multistability (and thus a discontinuous first-order transi-
tion), we show histograms of r for d=4 given over all inde-
pendent trials in Fig. 8. The histograms show no evidence
whatsoever of multiple peaks beyond the statistical fluctua-
tions expected for the relatively small sample size, and thus
we can safely rule out a discontinuous transition, in agree-
ment with the findings of the mean-field analysis. Similarly
peaked histograms are found in d=3 (less sharply peaked but
distinctly unimodal) and d=5 (more sharply peaked).

a=1.850 a=1.875 a=1.900
20 | 20 I 20
0 0 0
0.02 0.04 0.02 0.04 0.06 0 0.1 0.2
a=1.925 a=1.950 a=1.950
®
g 20 20 20
o
© A
0 0 0
0.1 0.15 02 02 025 024 0.26 0.28
a=2.000 a=2.100 a=2.200
20 | 20 I 20 |
0 0 0
029 0.3 0.31 0.38 0.39 0.435 0.44

r

FIG. 8. (Color online) Lack of multistability in d=4: Histo-
grams over all independent trials show only single peaks of varying
widths, consistent with the expectations for a second-order phase
transition.
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FIG. 9. (Color online) Exponents in d=3: Data collapse of rL?”
vs (a/a,—1)L"". With a.=2.345, we show the data collapse using
the theoretical XY exponents in 3D. The collapse is excellent, sug-
gesting that the model is in the XY universality class. The insets
show a closer view near the critical point.

To further characterize this transition, we use a systematic
finite-size scaling analysis. We start by assuming the
standard form for  in a finite system,

r=L"""F((a-a)L"), (23)

where F(x) is a scaling function that approaches a constant
as x— 0. This ansatz suggests that near the critical point we
should plot rLP" versus [(a/a.)—1]L"", and data from dif-
ferent system sizes should collapse onto a single curve. To
test our numerical data against different universality classes,
we choose the appropriate critical exponents for each, recog-
nizing that there are variations in the reported values of these
exponents. For the XY universality class we use the expo-
nents reported in [17] (8=0.34 and v=0.66). For the Ising
exponents we use those given in [18] (8=0.31 and v=0.64).
In Fig. 9, we see quite convincingly a collapse when expo-
nents from the XY class are used. For comparison, we also
show the data collapse when 3D Ising exponents are used
(Fig. 10). Our data suggest that the model falls within the XY
universality class, though the very small differences between
XY and Ising exponents make it impossible to entirely rule
out Ising-like behavior. We should point out that while some
reported values of the Ising critical exponents differ from the
XY values by more than those used above, others differ by
less (see [19] for an exhaustive collection of estimates). Note
that this scaling procedure was attempted for many values a,
within the stated range of accuracy. In all cases in which a
distinction could be made, the XY exponents provided a
better collapse than the corresponding Ising exponents.

To complete the analogy with the equilibrium phase tran-
sition, we explore spatial correlations in d=3. Specifically,
we calculate C(I), the spatial correlation function, given by

N 3

c)=\ 2 X expliexp(=id;) ) -r*.  (24)

j=1 n=1

Here ¢; again indicates the discrete phase of the oscillator at
site j, and [, denotes the Cartesian components in the x, y,
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FIG. 10. (Color online) Exponents in d=3. Data collapse of
rLP"” vs (ala,—1)LY". With a.=2.345, we show the data collapse
using theoretical Ising 3D exponents. The collapse is reasonably
good, but still poor compared with that seen with exponents from
the XY class. Insets show a closer view near the critical point.

and z directions at distance / from site j. The correlation
function depends only on this distance. As seen in Fig. 11,
correlations develop for values of a near the critical point,
while this correlation is absent away from a.. The functional
form of C(I) as a approaches a, is similar to that seen in
equilibrium transitions. Indeed, the lower inset is at the criti-
cal point (a=2.345) and explicitly shows a power-law decay
of the correlation function. The upper inset is far from the
critical point (a=1.8) and shows exponential decay.

In four spatial dimensions, we also see a transition to
synchrony characterized by large fluctuations at the critical
point. Here we estimate the transition coupling to be
a,.=1.900+0.025 by again considering the peak in y (see

—+—2a=1.800
—s—2a=2.000
—a—g=2.300
—%—a=2.345 0 ‘Y

——2=2375| S 2| % % 5 10
= 0.03} 8

0.02r

0.01f

FIG. 11. (Color online) Spatial correlations in d=3. As a ap-
proaches the critical value a,, evidence of long-range correlations
develops, indicative of a diverging correlation length at the critical
point. The lower inset shows the power-law decay of the correlation
function at the critical point, while the upper inset shows that the
correlation function decays exponentially far from the critical point.
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FIG. 12. (Color online) Transition in d=4: The behavior of the
order parameter near the transition point is shown for various sys-
tem sizes. The inset shows the generalized susceptibility, y, which
peaks at a=1.900+0.025, giving an estimation of a..

Figs. 12 and 13). Because we expect d=4 to be the upper
critical dimension in accordance with XY/Ising behavior, we
anticipate a slight breakdown of the scaling relation (23). An
alternate scaling ansatz valid at d,. is given by Eq. (23) with
the transformation L — In(L)L"* [20]. A priori it is not clear
how strongly Eq. (23) will be violated in d=4, nor is it clear
that the modified ansatz will better serve our purposes; there-
fore, we will use both forms of scaling in testing for the
mean-field exponents v=1/2 and B=1/2.

As shown in Fig. 14, the data collapse is very good with
the mean-field exponents regardless of which scaling ansatz
is used. As such, our simulations suggest that d=4 serves as
the upper critical dimension; additionally, it appears that cor-
rections to finite-size scaling at d=4 are not substantial,
though a much more precise study would be needed to
investigate such corrections in greater detail.

To further support the claim that d,.=4, we consider the
case d=5. We see a transition to synchrony that occurs at

*

~a=1.6
+a=1.7
e g=1.8|]
a=2.0
=21
a=2.2
a=2.3
a=2.4

10 - . . \ L
0.1 0.2 0.3 04

L—1

A

* A
£ o4

FIG. 13. Log-log plots of r vs L™! for d=4. The order parameter
r clearly approaches a finite, nonzero value for a>a, and ap-
proaches 0 for a<<a..

031113-7



WOOD et al. PHYSICAL REVIEW E 74, 031113 (2006)
7 T T T T T T T T T
6 8 2
> x
6l = o
4 x
5t =2 Df
£ o A
=2 x —1
_| A 10 1
z 4 T #J@ x & a=14
= oLx 2@ 8 - e a=1.5
-3} 40 30 -20 -10 P eea=16
& b a=17]
) (a/a_-1) (Ll )™ g Aaot B
# o L=4 » oastg
& o Lg 1072} ok a=2.0 ]
b £ - Lz Py
A T 4 1=16 , : —
O L 1 L 1 L 1
00 20 10 20 %0 o1 o f 03
a/a —
[0

FIG. 14. (Color online) Exponents in d=4: Data collapse
of original ansatz (23) with mean-field exponents. Inset: Data
collapse with modified scaling ansatz r{In(L)LY4]8"  vs
[(ala.)—11In(L)L"*]" with mean-field exponents.

a,=1.750+0.015 (see Figs. 15 and 16). As expected, this
value for a, is considerably closer than the critical coupling
in four dimensions to the value a.=1.5 calculated by linear
stability analysis in mean-field theory.

Finally, it is interesting to test the suggestion of Jones and
Young [20] that above the critical dimension, d=d,, it is
appropriate to modify the finite-size scaling ansatz (23) by
the transformation L—L%*. We test this suggestion for
d=5. As indicated in Fig. 17, the data collapse is excellent
for both the original scaling and the modified form of the
ansatz. The collapse of the data with mean-field exponents
seems slightly better using the modified ansatz, though a
much more precise study would be required to accurately
capture the form of the modified scaling in d>d,.. In any
case, our data suggest that the model exhibits mean-field
behavior in d=5, verifying that d=4 serves as the upper
critical dimension.

0.6 _

0.5f

0.4}

—_

0.3t

0.2

0.1}

FIG. 15. (Color online) Transition in d=5: The behavior of the
order parameter near the transition point is shown for various sys-
tem sizes. The inset shows the generalized susceptibility, y, which
peaks at a=1.750+0.015, giving an estimation of a..

FIG. 16. Log-log plots of 7 vs L™! in d=5. The order parameter
r clearly approaches a finite, nonzero value for a>a,. and ap-
proaches O for a<<a. The value of a. appears to fall between
a=1.8and 1.7.

V. SUMMARY

We have introduced a simple discrete model for studying
phase coherence in spatially distributed populations of noisy
coupled oscillators. This model lends itself to numerical
study even in the case of nearest-neighbor coupling because
each oscillator is a simple three-state system rather than one
of the usual continuum choices. The coupled system is there-
fore much simpler than the usual set of coupled nonlinear
differential equations.

A mean-field treatment combined with linear stability
analysis shows that the globally coupled model undergoes a
Hopf bifurcation to macroscopic synchrony as the coupling
parameter a is increased. We are able to determine the mean-
field critical coupling constant analytically. For locally

5r A J
QX
! &
4k = A ]
g 5
-2
- & A
2 8 mj r ]
Ez_ X ox 0O 9
- 0 P
- -20 0 20 x
2 d/(4v) & A
(a/aC 1)L 5
és o L=4
1r a o L=6 |1
x |=8
. A AR ,Ama@ A L=10]|
-30 -20 10 20

(a/a 1) [

FIG. 17. (Color online) Exponents in d=5: Data collapse of
original ansatz (23) with mean-field exponents. Inset: Data collapse
of rL*" vs (al/a.—1)L¥*" with mean-field exponents. The col-
lapse of the data is quite convincing when the exact mean-field
exponents are used.
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coupled units, numerical solution of the system shows the
emergence of a thermodynamic synchronous phase for
d>?2, indicating that the lower critical dimension is d,.=2.
As d is increased, the numerically established critical value
a, approaches that predicted by the mean-field treatment of
the model. For d=3, we give strong numerical evidence that
the model falls into the 3D XY universality class, while for
d=4 the critical exponents are those predicted by mean-field
theory. The exponents in d=5 also take on the mean-field
values, thus verifying that d=4 corresponds to the upper
critical dimension d,,.

In conclusion, while nonequilibrium phase transitions
have a much wider diversity in universality classes than
equilibrium ones [21], it is remarkable that the prototype of a
nonequilibrium transition, namely a phase transition that
breaks the symmetry of translation in time, is described, at
least for the critical exponents investigated in this paper, by
an equilibrium universality class. In particular, the Mermin-
Wagner theorem, stating that continuous symmetries cannot
be broken in dimension 2 or lower, appears to apply. Further-
more, the XY model is known to display a Kosterlitz-
Thouless transition, in which, beyond a critical temperature,

PHYSICAL REVIEW E 74, 031113 (2006)

vortex pairs can unbind into individual units creating long-
range correlations. Preliminary results indicate that a similar
transition occurs in our model. Finally, a note of caution
concerning the discreteness of the phase is in order. We first
note that microscopic models often feature discrete degrees
of freedom. For example, our model is reminiscent of the
triangular reaction model introduced by Onsager [22], on the
basis of which he illustrated the concept of detailed balance
as a characterization of equilibrium. Continuous phase mod-
els appear in a suitable thermodynamic limit. We stress that
the breaking of time translational symmetry can occur inde-
pendently of whether the phase is a discrete or continuous
variable. It is, however, not evident whether continuous and
discrete phase models belong to the same universality class.
The results found here seem to support the latter thesis, but a
renormalization calculation confirming this hypothesis would
be welcome.
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