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We investigate the energetics of a Brownian motor driven by position-dependent temperature, commonly
known as the Büttiker-Landauer motor. Overdamped models �M =0� predict that the motor can attain Carnot
efficiency. However, the overdamped limit �M→0� contradicts the previous prediction due to the kinetic
energy contribution to the heat transfer. Using molecular dynamics simulation and numerical solution of the
inertial Langevin equation, we confirm that the motor can never achieve Carnot efficiency and verify that the
heat flow via kinetic energy diverges as M−1/2 in the overdamped limit. The reciprocal process of the motor,
namely, the Büttiker-Landauer refrigerator, is also examined. In this case, the overdamped approach succeeds
in predicting the heat transfer only when there is no temperature gradient. Its found that the Onsager symmetry
between the motor and refrigerator does not suffer from the singular behavior of the kinetic energy
contribution.
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I. INTRODUCTION

Since the industrial revolution, thermodynamics has been
a guiding principle for the development of new technology.
We are now entering the era of nanotechnology, where we
can construct and manipulate nanoscale objects as we desire.
Realization of nanoscale machines is within our reach. How-
ever, we still have to overcome various issues. As the size of
a system approaches that of molecules, thermal fluctuations
begin to play a significant role. It would be rather difficult to
operate a nanomachine against strong thermal fluctuations.
Instead, the nanomachine must be able to work harmoniously
or even collaboratively with the fluctuations. In order to de-
sign such machines, we need to understand thermodynamics
of small systems, taking into account large thermal fluctua-
tions. Furthermore, the molecular machinery in biological
systems such as motor proteins is similarly subject to large
thermal fluctuations. Thermodynamics, at the macromolecu-
lar level, is also essential in the investigation of such biologi-
cal machines.

Unfortunately, since it was originally developed for mac-
roscopic systems where fluctuations are negligible, standard
thermodynamics is often powerless in cases where fluctua-
tions dominate. We often resort to stochastic approaches such
as the Fokker-Planck or Langevin equation. Despite the fact
that these approaches have been successfully used for many
years, the relation between thermodynamics and stochastic
methods is not well established. It was only ten years ago
that a general theory of energetics such as heat within the
stochastic regime �stochastic energetics� �1–3� was devel-
oped. The validity of the theory needs to be systematically
tested with experiments or first-principles simulations.

When traditional thermodynamics was developed, the
Carnot engine played a key role as an idealized model. Simi-
larly, Brownian motors �4� have been basic working models
for systems dominated by thermal fluctuations. In particular,
autonomous thermal engines such as the Feynman-

Smoluchowski �FS� �5� and Büttiker-Landauer �BL� motors
�6,7�, unlike other Brownian motors, do not require a time-
dependent external influence. These motors are driven solely
by thermal fluctuations and their motility disappears when
the motors become macroscopic in size.

There is no difficulty in the investigation of their motility
using standard stochastic approaches. However, it was not
straightforward to investigate the thermodynamics of these
systems. In his celebrated textbook �5�, Feynman attempted
to investigate the thermodynamics of the FS motor and con-
cluded that it can reach Carnot efficiency. Yet he overlooked
the effect of fluctuations, and later it was shown that the heat
transfer between two heat reservoirs never ceases even when
the motor moves quasistatically, and thus it is not possible to
reach the Carnot efficiency �1,8,9�. Even when the average
velocity of the motor is zero, fluctuations around the mean
value can transport some energy. It is this fluctuation that
transports heat. Recently, a simpler model of the FS motor
was developed and the result confirms the presence of such
heat transfer �10�. Similar heat transfer was investigated in
the problems of adiabatic �11� and shared pistons �12�. The
reverse process of the FS motor, namely, the FS refrigerator,
has also been studied using various models �13–15�.

The BL motor is just an overdamped Brownian particle in
a periodic potential field subject to a spatially inhomoge-
neous temperature. When the temperature changes across a
potential barrier, the Brownian particle jumps over the bar-
rier more often from the hot side to the cold side than the
other way �6,7,16�. Therefore, Brownian particles move in
one direction on average. Whereas the FS motor is simulta-
neously in contact with two heat baths, the BL motor moves
from one heat bath to another by itself. Therefore, the BL
motor is a different class of Brownian motor from the FS
motor. In order for the BL motor to operate continuously, it
must be thermalized with the local environment before en-
tering the next heat bath. Thus, it works better in the over-
damped limit but fails in the underdamped limit �17�.

As for the FS motor, there is no difficulty in explaining
the motility of the BL motor. However, the thermodynamics
of this system is not straightforward. Intuitively, we expect
nonvanishing heat transfer even when the average current is*kawai@uab.edu
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zero since the Brownian particles can move back and forth
between the hot and cold regions by thermal fluctuations
�18,19�. Despite this anticipation, some previous investiga-
tion claimed that the BL motor can reach Carnot efficiency
�20,21� and under certain conditions can act as a refrigerator,
attaining the corresponding Carnot coefficient of perfor-
mance �21�. It turns out, however, that the overdamped
Langevin approach fails to predict such heat transfer for the
BL motor while it works fine for the FS motor �1,9�. It ap-
pears that, even when the system is in the overdamped re-
gime, the inertial mass �M� apparently plays a critical role in
certain thermodynamic processes. In fact, the heat evaluated
by assuming M =0 at the beginning does not agree with the
result obtained by taking the limit M→0 at the end. This
singularity has been phenomenologically predicted �18,19�
but not yet experimentally tested. Due to the lack of experi-
mental confirmation, this issue is still a subject of debate
�21,22�.

In this paper, we investigate the BL motor and its recip-
rocal process, the BL refrigerator, using stochastic energetics
based on the Langevin approach, with and without inertial
effects, and compare the results with molecular dynamics
simulation. Our main objective is to check the failure of the
overdamped Langevin method and the validity of the inertial
Langevin method by comparing the results with molecular
dynamics simulations. The overdamped method appears to
fail for the BL motor involving inhomogeneous temperature
but works fine for the BL refrigerator operated with homo-
geneous temperature. On the other hand, these two processes
are related to one another through Onsager’s symmetry,
which is not obvious for a system with inhomogeneous tem-
perature, prompting us to investigate the validity of the On-
sager symmetry in the overdamped regime �23�. We will
check the validity numerically, taking into account inertial
effects.

In the next section, we introduce a concrete model of the
BL motor and/or refrigerator which can be investigated by
both Langevin and molecular dynamics simulations. In Sec.
III, a brief heuristic discussion based on the overdamped
Langevin equation is given. In Sec. IV the results of the
overdamped approach are compared with numerical simula-
tions of the Langevin equation, taking inertia into account,
and with molecular dynamics simulations. Further discussion
and conclusions follow in the final section.

II. THE MODEL AND METHODS

A. The model

We consider a chain of two-dimensional cells aligned in
the x direction as illustrated in Fig. 1. Each cell has a width
of L /2 and is filled with N gas particles confined in the cell
they belong to. No direct heat exchange between cells
through the walls is permitted. The gas particles in each cell
act as a heat reservoir with their own temperature, indepen-
dent of the temperature in other cells. Brownian particles of
mass M are placed in the cells. Unlike the gas particles, the
Brownian particles are allowed to move freely from one cell
to another through the walls, and they are also subject to a
potential field U�x�, which is periodic in the x direction with

a periodicity L and constant in the y direction. For simplicity,
we use a piecewise-linear potential

U�x� = �
2U0

L
x for 0 � x �

L
2 ,

2U0

L
�L − x� for L

2 � x � L ,� �1�

where U0 is the potential height. The x coordinate is chosen
such that the location of potential maxima or minima coin-
cide with the cell boundaries as shown in Fig. 1. In addition
to the periodic potential, a constant external force F is ex-
erted on the Brownian particles. We further assume that tem-
perature is periodic with the same periodicity as the potential
and piecewise constant,

T�x� = �T1 for 0 � x �
L
2 ,

T2 for L
2 � x � L .

� �2�

Temperature is measured in energy units �kB=1�.
For technical simplicity, we consider only two cells �cell 1

for 0�x�L /2 and cell 2 for L /2�x�L� with a periodic
boundary condition instead of infinitely long chains.

B. Langevin approaches

Molecular dynamics �MD� simulation is a useful tool to
investigate this kind of model. However, a simpler math-
ematical model is desirable since MD simulation is compu-
tationally quite demanding. Apart from long-time fluid dy-
namical effects in two dimensions, the motion of the
Brownian particle in the x direction can be investigated by
the one-dimensional Langevin equation:

FIG. 1. �Color online� Two rectangular reservoirs filled with gas
particles at temperatures T1 and T2 are alternately connected. Gas
particles �red �dark gray� and blue �light gray� circles� are confined
in the cell and only Brownian particles �large black circle� can
move through the walls. Brownian particles are subjected to a
piecewise-linear potential as shown at the bottom.
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ẋ = v ,

Mv̇ = − ��x�v − U��x� + F + 	2��x�T�x���t� , �3�

where x and v are the position and velocity of the Brownian
particle and ��t� is a standard Gaussian white noise:


��t�� = 0, 
��t���s�� = ��t − s� . �4�

Here, and later on, an overdot refers to a derivative taken
with respect to time and a prime means a derivative taken
with respect to space. The position-dependent friction coef-
ficient ��x� is assumed to be periodic and piecewise constant
in the same way as temperature:

��x� = ��1 for 0 � x �
L
2 ,

�2 for L
2 � x � L .

� �5�

It has been shown that the Langevin equation �3� correctly
predicts the behavior of Brownian particles. However, due to
its mathematical difficulty, a further approximation is often
used. When the relaxation time �=M /� is much smaller than
a mechanical time scale t0=	ML2 /U0, the inertial term in the
Langevin equation �3� is usually neglected. Setting M =0 in
Eq. �3�, we obtain a popular overdamped Langevin equation,

��x�ẋ = − U��x� + F + 	2��x�T�x���t� . �6�

While this equation is widely used in many different subject
areas, we must be careful with M =0 since both � and t0 are
zero at the same time. Strictly speaking, the overdamped
condition �� t0 should be satisfied only in the sense of the
limit M→0.

A further complication arises when the temperature or
friction coefficient depends on the position. Simple omission
of the inertial term does not lead to the correct overdamped
Langevin equation. One can also study stochastic processes
in the overdamped limit by the equivalent Fokker-Planck
equation. There is, however, no universal Fokker-Planck
equation that describes a system with nonuniform tempera-
ture. Van Kampen �24� found that the particular form of the
Fokker-Planck equation depends on the details of each sys-
tem. For our model �overdamped Brownian particle subject
to inhomogeneous temperature� the appropriate Fokker-
Plank equation is given by

�P�x,t�
�t

=
�

�x
� 1

��x�
�U��x� − F� +
�

�x
T�x��P�x,t�� . �7�

When Eq. �7� is solved for the piecewise-constant tempera-
ture �2�, the proper boundary conditions are T1P���=T2P�L
−�� and T1P�L /2−��=T2P�L /2+��, where � is infinitesi-
mally small �25�.

Corresponding to the Fokker-Planck equation �7�, the cor-
rect form of the overdamped Langevin equation, in the Stra-
tonovich interpretation, is

��x�ẋ = − U��x� + F + 	2T�x���x���t� −
1

2��x�
d

dx
�T�x���x��

�8�

as derived in �26,27�. In this paper, we shall call Eq. �8� the
overdamped Langevin equation and refer to Eq. �3� as the
inertial Langevin equation.

As an indicator of overdamping, we introduce a dimen-
sionless frictional coefficient

�̂ =
�t0

M
=

�L
	MU0

. �9�

When �̂�1, the system is in the overdamped regime.

C. Stochastic energetics

We investigate the thermodynamic behavior of the BL
system using stochastic energetics introduced by Sekimoto
�1–3�. Heat flux from the gas particles in the ith cell to the
Brownian particles is defined by

Q̇i = 
�− �iẋ + 	2�iTi��t��ẋ�i, �10�

where 
¯�i indicates the ensemble average taken while the
Brownian particles are located in the ith cell. Using the in-
ertial Langevin equation �3�, Eq. �10� can be evaluated in
three terms:

Q̇i =
M

2

d

dt

ẋ2�i + 
U��x�ẋ�i − F
ẋ�i = Q̇i

KE + Q̇i
PE + Q̇i

J,

�11�

where the first two terms on the right-hand side �RHS� are
the kinetic energy and potential energy contribution to the
heat flux, respectively, and the last term is the Joule heat.

Work done on a Brownian particle by the external force in
each cell is given by

Ẇi = F
ẋ�i. �12�

In the steady state, the net energy flux to the Brownian par-
ticles must be zero, and thus the energy gained by the
Brownian particles in cell 1 must be canceled by the energy
loss in cell 2. Therefore, heat flux from cell 1 to cell 2 via the
Brownian particles is defined as

Q̇1→2 = Q̇1 + Ẇ1 = Q̇1
KE + Q̇1

PE. �13�

D. Molecular dynamics simulation

In order to check the validity of the Langevin approach,
we performed intensive molecular dynamics simulation. In
our MD simulation the heat bath consists of two-dimensional
hard disks of mass m and diameter 	. The Brownian particle
is of mass M and diameter 	B. Inclusion of external forces
significantly reduces the numerical advantage of hard disk
MD simulation. However our algorithm �see Appendix A� is
fast enough to realize a sufficient number of trajectories for
ensemble averaging.

In order to compare the results of Langevin approaches
with those of MD simulation, we need to find the corre-
sponding frictional coefficient. We use an analytical expres-
sion obtained for an ideal gas �28�,
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� = 	B
	2�mT , �14�

where 
 is the density of the gas. Note that this ideal � does
not depend on M. Alternately, we could use � measured in
the MD simulation. In fact, we can get a better agreement
between the MD simulation and Langevin approaches if the
measured values are used. However, the measured values
depend on M, hindering the real mass dependency of the
Langevin equation. Therfore, we use the theoretical frictional
coefficient �14� in the Langevin equations �3� and �8�.

In all our MD simulations we use N=1000 gas particles
�m=1, 	=1� in each cell, with the size of each cell being
250�400, so that the density 
=0.01. The spatial period of
the piecewise-linear potential is L=500 and the barrier
height U0=1.0. As the temperature of the reservoirs changes
during the course of the simulation there is no well-defined
stationary state. However, all our simulations were carried
out using a sufficiently large number of gas particles so that
the system remains in a quasi-steady-state for a sufficiently
long period of time, enabling us to measure the various
physical quantities properly.

III. HEURISTIC DISCUSSION WITH THE
OVERDAMPED MODEL

In this section we first review the known properties of the
BL motor and its reciprocal process the BL refrigerator, in
the overdamped limit. When the temperatures of the cells are
different �T1
T2�, the Brownian particles in the high-
temperature cell can reach a higher-potential-energy region
than those in the low-temperature cell. Hence, the Brownian
particles tend to move from the hot cell to the cold cell over
the potential barrier. At the other cell boundary, the potential
is minimum and both cold and hot Brownian particles can
easily cross to the other side. Therfore, the Brownian par-
ticles flow in the positive-x direction on average even in the
absence of external force �F=0�. When an external load is
applied �F�0�, the Brownian particles can do work against
it as a motor.

Asymmetry in the spatial distribution of the Brownian
particles due to the temperature difference is the main driv-
ing of this motor. The overdamped Langevin equation �8� or
Fokker-Planck equation �7� provides an analytical expression
for the spatial distribution, from which we obtain the average
velocity of the motor �see Appendix B�:


v� =
2 sinh��1 + �2�

��1/�1 − �2/�2��1/f1 − 1/f2�sinh �1 sinh �2 − ��1/f1 + �2/f2�sinh��1 + �2�
, �15�

where f1,2=−F�2U0 /L and �i=−f iL / �4Ti�. In the absence
of external force �F=0�, Eq. �15� is always positive for T1

T2 and hence the Brownian particles move in the positive
direction as expected. In fact, the particle distribution and
velocity in the overdamped regime agree reasonably well
with the results obtained from numerical simulation of the
inertial Langevin equation and molecular dynamics simula-
tion �see Figs. 2 and 3�, suggesting the validity of the over-
damped Langevin equation.

Now, we consider the thermodynamic efficiency of the
BL motor. Based on the successful prediction of particle dis-
tribution and velocity it is natural to use the overdamped
Langevin approach for other quantities such as efficiency.
Applying the overdamped Langevin equation �8� to the defi-
nition of heat �10�, the heat flux from the heat bath to the
Brownian particles in cell 1 is given by

Q̇1 = � 1

2��x�
d

dx
���x�T�x��ẋ�

1
+ 
U��x�ẋ�1 − F
ẋ�1.

�16�

Comparing this equation with Eq. �11�, the first term in the
RHS of Eq. �16� corresponds to the kinetic energy contribu-

tion Q̇i
KE. However, due to the periodic boundary condition

and Eq. �14�, this kinetic energy contribution vanishes �20�

and we obtain Q̇1= �2U0 /L−F�
ẋ�1. Hence, we find the effi-
ciency of the motor

� =
− Ẇ

Q̇1

=
− 2F

2U0/L − F
, �17�

where Ẇ=F
v�. When the motor is in a stalled state ��1
+�2=0�, we can show that the efficiency reaches the Carnot
efficiency �C=1−T2 /T1.

This result is puzzling since at the moment a Brownian
particle enters the cold bath it is carrying T1 /2 of kinetic
energy. When it is thermalized with the cold bath, Q1→2

KE

� �T1−T2� /2 of heat dissipates into the cold bath. This heat
dissipation takes place whenever the Brownian particle
crosses a temperature boundary and it is irreversible. Due to
diffusion, the crossing occurs even when the average veloc-
ity vanishes, and this irreversible heat transfer due to thermal
fluctuation of Brownian particles never ceases as long as
there is a steep temperature gradient. Derényi and Astumian
�18� and Hondou and Sekimoto �19� have pointed out that
the kinetic energy contribution is the dominant channel of
heat transfer between two cells and thus the efficiency of the
BL motor cannot reach the Carnot efficiency. This situation
is similar to the case of the FS motor �1,8�.

An interesting question is why the overdamped Langevin
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approach failed for the BL motor whereas it worked fine for
the FS motor. Derényi and Astumian �18� and also Hondou
and Sekimoto �19� answered this question phenomenologi-
cally. Consider the thermal velocity vth=	T /M. When a
Brownian particle crosses the temperature boundary, it will
not be immediately thermalized and there is a narrow region
�th=vth�=	TM /� where the average kinetic energy of the
Brownian particle does not coincide with the temperature of
the reservoir �see lower panel of Fig. 3�. In the overdamped
limit �M→0�, this region vanishes, justifying the use of the
overdamped approach. However, the effective temperature
gradient is �T1−T2� /�th�M−1/2. Hence, the heat current is
proportional to M−1/2 and diverges as M→0. This singularity
implies that the overdamped regime that assumes M =0 is not
equivalent to the overdamped limit M→0. Apparently, the
FS motor does not have this problem �1�. One of our objec-
tives is to verify this singular behavior by numerical simula-
tions.

Next, we turn to the BL refrigerator. We assume T1=T2

=T and apply a weak external force 0�F�2U0 /L to the
Brownian particle. Due to the external force, the Brownian
particle drifts in the direction of F and its average velocity in
the overdamped limit can be obtained from Eq. �15�. Unlike
the motor case, the temperature is uniform throughout the
system and thus the kinetic energy does not contribute sig-
nificantly to the heat exchange between the cells. Again us-
ing the overdamped model, the heat flux absorbed by the
Brownian particle from the ith reservoir is obtained from Eq.
�16� as

Q̇1 = +
2U0

L

ẋ�1 − F
ẋ�1, Q̇2 = −

2U0

L

ẋ�2 − F
ẋ�2,

�18�

where the first term is the potential energy contribution Q̇i
PE

and the second term the Joule heat Q̇i
J. Since Q̇i

PE�F and

Q̇i
J�F2 we can have positive Q̇1 for sufficiently small F,

indicating that cell 1 is refrigerated. Since there is no singu-
lar behavior due to temperature change, the overdamped
model may be good enough. However, as soon as refrigera-
tion induces a temperature difference between the cells, the
heat transfer due to the kinetic energy reduces the power of
refrigeration. Our second objective is to investigate whether
the overdamped model is sufficient and if the refrigeration
can be sustained against the heat leak due to the kinetic en-
ergy.

The BL motor and refrigerator are a result of a cross ef-
fect between the external force F and the temperature differ-
ence �T. Assuming they are small, we can make a connec-
tion between the motor and refrigerator using linear
irreversible thermodynamics expressed by

0 0.2 0.4 0.6 0.8
∆T

0

0.01
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<

v>

Overdamped
Inertial
MD simulation

FIG. 2. Mean velocity as a function of the temperature differ-
ence �T=T1−T2 between the two cells. The average temperature of
the whole system is fixed to Tav= �T1+T2� /2=0.5. Solid and dashed
lines correspond to data obtained from the inertial Langevin equa-
tion �3� and the overdamped Langevin equation �8�, respectively,
while circles correspond to MD simulation. The parameter values
are M /m=4.0, 	B=4.0, and F=0. The dimensionless frictional co-
efficients vary from �̂1= �̂2=17.7 at �T=0 to �̂1=24.4 and �̂2

=5.6 at �T=0.9. As �̂2 becomes less overdamped with the increase
of �T, the overdamped model deviates from the inertial Langevin
equation.
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FIG. 3. Upper panel: Steady state spatial distribution P�x� of
Brownian particles as obtained from the Fokker-Planck equation �7�
�solid line�, overdamped Langevin equation �8� �dotted line, mostly
hidden under the solid lines�, inertial Langevin equation �3� �dashed
line�, and MD simulation �circles�. The parameter values are
M /m=5.0, 	B=6.0, T1=0.6, T2=0.4, and F=0. �̂1=26.0 and �̂2

=21.3 correspond to the overdamped regime. The two insets show
the details of P�x� near the temperature boundaries at x /L=0.5 and
1.0. Lower panel: The locally averaged kinetic energy of the
Brownian particle along the x axis, obtained from the inertial
Langevin equation �3�.
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v� = L11
F

T
+ L12

�T

T2 ,

Q̇1→2 = L21
F

T
+ L22

�T

T2 , �19�

where the transport coefficients are defined as

L11 = T
�
v�
�F

, L12 = T2 �
v�
��T

,

L21 = T
�Q̇1→2

�F
, L22 = T2�Q̇1→2

��T
. �20�

Here, the partial derivatives are evaluated at �T=0 and F
=0. In the overdamped case we can obtain all Onsager coef-
ficients from Eqs. �13�, �15�, and �16� as

L11 =
U0

2

T
�, L22 =

U0
4

TL2�, L12 = L21 =
U0

3

TL
� , �21�

where �= �4� sinh2�U0 /2T��−1. These coefficients support
the Onsager symmetry L12=L21. Moreover, Eq. �21� indicates
L11L22−L12L21=0, implying no entropy production �29�, and
thus the motor operates at the Carnot efficiency. Hence the
overdamped model again erroneously predicts the highest

possible efficiency. The singular behavior of Q̇1→2 at M =0
casts some doubt on the Onsager symmetry since the two
limits M→0 and �T→0 do not commute. Our third objec-
tive is to numerically investigate the validity of linear irre-
versible theory and the Onsager symmetry at the over-
damped limit.

IV. RESULTS

A. Motor

First we show in Fig. 3 that the numerical solution of the
overdamped Langevin equation �8� agrees perfectly with the
solution of the corresponding Fokker-Planck equation �7�,
confirming that the extra term in Eq. �8� is necessary. Fur-
thermore, the results of overdamped Langevin equation are
in good agreement with the numerical results from the iner-
tial Langevin equation �3� and molecular dynamics simula-
tion, except for narrow regions at the temperature boundaries
�see the insets in Fig. 3�. Although it is in general small, this
error in the overdamped regime should not be overlooked.

As we discussed in Sec. III, the overdamped Langevin
method assumes that the Brownian particles are locally in
equilibrium with the the thermal reservoir. Therefore, the av-
erage kinetic energy of the Brownian particles is assumed to
be the same as the local temperature of the heat bath. This
assumption, however, fails near the temperature boundaries,
since the Brownian particles entering from one temperature
region to another are not immediately thermalized with the
new environment even when the mass is very small, as Fig.
3 indicates. The size of the transition region is the thermali-
zation length �th. In the overdamped limit �M→0�, the tran-
sition region indeed vanishes but only slowly as 	M.

It turns out that such a subtle error in the overdamped
Langevin method does not lead to large errors in certain
quantities obtained from it. Figure 2 shows that the over-
damped Langevin equation predicts the average velocity as
well as does the inertial Langevin equation. Due to this suc-
cess we feel safe in using the overdamped approach to com-
pute other quantities. However, the calculation of the heat is
a different story. As we discussed in the previous section, the
overdamped approach predicts that the heat transfer between
the cells is only from potential energy contribution. How-
ever, Hondou and Sekimoto �19� pointed out that the narrow
transition region plays a dominant role in heat transfer and
the overdamped Langevin equation fails in the investigation
of heat calculations. The inertial Langevin approach con-
cludes that the kinetic energy contribution is actually domi-
nant.

Using scaling arguments, Derényi and Astumian �18� and
Hondou and Sekimoto �19� predicted that the kinetic energy
contribution diverges as M−1/2 at M =0. Figure 4 clearly
shows such a singularity, in good agreement with their

theory, and confirms Q̇1
KE� Q̇1

PE. We also find from Fig. 4
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FIG. 4. Mean velocity �a�, heat flux due to potential energy �b�,
and heat flux due to kinetic energy �c� as a function of the mass
ratio M /m. Circles, dashed lines, and solid lines correspond to MD
simulation, overdamped model, and inertial Langevin equation, re-
spectively. The parameter values are T1=0.6 and T2=0.4, 	B=5.0,
and F=0.0. As the mass ratio changes from M /m=0.1 to 60, �̂1

varies from 48.5 to 6.3, and �̂2 varies from 39.6 to 5.1. In �c� the
dotted line indicates 0.000 215�M /m�−1/2, an empirical fit to the
result of the inertial Langevin equation.
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that the result obtained from the inertial Langevin equation
approaches the MD simulation result as the mass ratio M /m
increases. Even for small M /m, the inertial Langevin equa-
tion predicts the correct order of magnitude of the motor
velocity and the heat flows, though, in general, the Langevin
approach is not applicable in such a case. The motor velocity
and heat flow via potential energy predicted by the over-
damped model, deviate from the inertial Langevin equation
and MD simulation result as the mass ratio increases because
the inertial effect becomes too large to be ignored. The good
agreement between the inertial Langevin equation and the
molecular dynamics simulation shows that Hondou and
Sekimoto’s definition of stochastic energetics predicts the
heat correctly even when the temperature is spatially inho-
mogeneous.

In Fig. 5, we plot the efficiency of the motor normalized
by the Carnot efficiency �C, as a function of the external
load F normalized by the magnitude of the force exerted by
the periodic potential energy. In contradiction to the over-
damped model, the efficiency is far below the Carnot limit.
While this result was phenomenologically argued for in
�18,19�, here we confirmed with molecular dynamics simu-
lation and numerical solution of the inertial Langevin equa-
tion that the kinetic energy contribution greatly reduces the
efficiency. Even when the motor is operated at the quasistatic
limit with a stall force, the irreversible heat transfer via ki-
netic energy persists and thus the Carnot limit is unattain-

able. Furthermore, the divergence of Q̇1
KE at M =0 diminishes

the efficiency of the motor to zero, in the overdamped limit.

B. Refrigerator

In the refrigerator mode, two cells initially have the same
temperature and the Brownian particles are driven by an ex-
ternal force F. In Fig. 6, MD simulation illustrates the cool-

ing of cell 1 at the expense of the heating of cell 2. Note,
however, that the average temperature Tav increases with
time as Joule heat is dissipated in both the cells. In the
Langevin approach, we cannot see such temperature changes
since the temperature needs to be kept constant. However, it
allows us to investigate heat transfer between the cells. Fig-
ure 7 shows the components of heat from cell 1 to the
Brownian particles as a function of F. The potential energy
contribution increases linearly with F whereas Joule heat de-

creases �Q̇1
J �0� as F2 �see Eq. �18��. For sufficiently small
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FIG. 5. Efficiency of the motor vs the magnitude of the external
load, for mass ratios M /m=5.0, 20.0, and 50.0. Solid lines corre-
spond to numerical solution of the inertial Langevin equation and
solid circles represent MD simulation �for M /m=5.0 only�. Other
parameter values are T1=0.7, T2=0.3, and 	B=5.0. The dimension-
less friction coefficients are �̂1=23.4, �̂2=15.3 for M /m=5.0; �̂1

=11.7, �̂2=7.7 for M /m=20.0; and �̂1=7.4, �̂2=4.9 for M /m
=50.0.
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F, the potential energy contribution wins, and hence the
Brownian particles extract heat from cell 1 and dump it in
cell 2. There is an optimal F at which the cooling effect is
maximum. The agreement between the overdamped and in-
ertial Langevin equations and with the molecular dynamics

simulation is good for Q̇1
PE and Q̇1

J .
Since the temperature is uniform, we do not expect sig-

nificant kinetic energy contribution. However, in Fig. 7, we
found that there is a small kinetic energy contribution which
is absent in the overdamped approach. In the overdamped
regime we assume that the change in potential energy imme-
diately dissipates into the reservoir. However, with a finite
mass, the potential energy is first converted to kinetic energy
which dissipates at a later time. For example, when a Brown-
ian particle slides down the potential slope near a cell bound-
ary, the potential energy change is transported to the next cell
as kinetic energy where it is dissipated as heat. The amount
of “unthermalized” kinetic energy the Brownian particles ac-
quire from the potential energy is approximately

Q̇1
KE � − U��x��th


ẋ�
L

= −
2U0
ẋ�

�L2
	MT , �22�

which is linear with F through 
ẋ� in agreement with the
result of the inertial Langevin equation �see Fig. 7�. Both this
kinetic energy �KE� contribution and the potential energy
�PE� contribution are in proportion to F, yet the magnitude of

Q̇1
KE is negligibly small compared to that of Q̇1

PE at the over-
damped limit. Therefore, the refrigeration is still possible.
Figure 8 shows that the PE contribution approaches the over-
damped model as M→0. The KE contribution approaches

zero as �M /m�1/2, in good agreement with the phenomeno-
logical prediction �22�. Figures 7 and 8 both show that the
overdamped model is in good agreement with the inertial
Langevin equation as well as the MD simulation in predict-
ing the velocity and heat flows.

The overdamped Langevin equation seems to work well
for the refrigerator. However, the cooling effect creates a
temperature difference between the two reservoirs and the
overdamped approach again fails. In turn, the temperature
difference induces a thermodynamic force opposing the ex-
ternal force F, through the Brownian motor mechanism. As
the temperature difference increases, the motor and refrigera-
tor effects eventually cancel each other, so that the average
velocity of the Brownian particle becomes zero and the cool-
ing ceases.

C. Onsager symmetry

As discussed in Sec. III, we need to evaluate the transport
coefficients �20� with a certain care. Since the heat transfer
diverges when the limit M→0 is taken before �T→0, we
first evaluate the coefficients at finite mass numerically from
response curves like Figs. 2 and 7. Then we reduce the mass
toward M =0. Figure 9 shows that, as M decreases, the prod-
uct of off-diagonal coefficients approaches the result of the
overdamped Langevin equation obtained from Eq. �21�.
However, the product of diagonal coefficients diverges as

�M /m�−1/2, reflecting the divergence of Q̇KE. As expected,
the off-diagonal coefficients do not suffer from the singular
inertial effect. Furthermore, Fig. 9 shows that L11L22
�L12L21 for all values of M /m, indicating large entropy pro-
duction, consistent with the very low efficiency. Finally, Fig.
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resents a fit ��	M /m� to the kinetic energy contribution according
to Eq. �22�. The parameter values are 	B=5.0, T1=T2=0.5, and
FL / �2U0�=0.375. The dimensionless friction coefficients ��̂1= �̂2�
vary from 31.3 at M /m=2.0 �overdamped� to 5.7 at M /m=60.0
�weakly damped�.
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10 numerically verifies the Onsager symmetry for all masses
within the accuracy of simulation and shows that the over-
damped model �21� predicts the correct overdamped limit.

V. DISCUSSION

In this paper, we investigated the thermodynamic proper-
ties of the BL motor and refrigerator using Langevin equa-
tions and molecular dynamics simulation. For mechanical
properties such as the velocity of the Brownian particles, we
observed reasonable agreement between results of the over-
damped Langevin equation and molecular dynamics simula-
tion. However, the overdamped Langevin equation failed to
predict thermodynamic properties such as the heat transfer.
On the other hand, we found good agreement between the
inertial Langevin equation and molecular dynamics simula-
tion even in the overdamped regime. Therefore, we conclude
that the inertial mass plays a significant role even in the
overdamped limit. The main effect of the inertial mass is the
kinetic energy contribution to the heat transfer. We confirmed
that the kinetic energy contribution is dominant when two
cells have different temperatures, and verified the previous
phenomenological prediction that the irreversible kinetic en-
ergy contribution diverges as M−1/2 at the overdamped limit.

Recently, Van den Broeck �30� investigated the efficiency
of Brownian motors using linear irreversible thermodynam-
ics and concluded that, in principle, Carnot efficiency can be
attained. He argues that, when the load F is small, the tem-
perature difference �T drives the motor in the forward direc-
tion and at the same time the motor transfers heat from the
high- to the low-temperature reservoir. As the load exceeds
the stall force, the motor moves backward, transferring heat
against the temperature gradient as a heat pump. In an ideal
system, the directions of velocity and heat are reversed at the
same magnitude of the external force. Hence, the thermody-

namic fluxes 
v� and Q̇1→2 simultaneously vanish despite F
and �T not being zero. This can happen only when L11L22
−L12L21=0 and thus Carnot efficiency is achieved.

In our case, the direction of Q̇PE coincides with the direc-

tion of 
v�, and both Q̇PE and 
v� vanish at the stall force.

However, Q̇KE flows from the hot to the cold reservoir re-

gardless of the direction of 
v�. Therefore, Q̇KE does not
necessarily vanish. In fact, it never vanishes and the Carnot
efficiency cannot be achieved in the BL system. The effi-
ciency of the BL motor is significantly reduced by the kinetic
energy contribution and vanishes at the overdamped limit.

Dérenyi and Astumian �18� have argued that, if we could
prevent the recrossing of the Brownian particle over the tem-
perature boundary, such irreversible heat transfer could be
arbitrarily reduced and thus the efficiency would be greatly
improved. They proposed to place a gate at each temperature
boundary which prevents Brownian particles from crossing
the boundary back and forth multiple times during a short
period of time. If such a gate were possible, the motor could
reach Carnot efficiency. However, it is not clear at present
how to construct such a gate without reducing the particle
velocity. Based on naive considerations, one might expect
significant reduction of the kinetic energy contribution by
optimizing the potential profile and the location of the tem-
perature boundary. Unfortunately, the reduction of heat trans-
fer always results in the reduction of the motor velocity as
well and the gain in the efficiency is very limited �31�.

Recently, Humphrey et al. �32� proposed a quantum
Brownian heat engine which achieves Carnot efficiency. In
this model, reversible particle exchange between two cells is
achieved by filtering the energy of the particle, without vio-
lating the second law. The filter allows only particles having
a certain energy, for which the Fermi-Dirac distributions in
the two cells coincide, to pass through. This ensures that the
particle flow does not alter the thermal distribution in either
cell so that there is no kinetic energy contribution. Hence, the
heat engine attains Carnot efficiency in the quasistatic limit.
Whether a similar heat engine can be devised in the classical
regime is not clear.
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APPENDIX A: HARD DISK MOLECULAR
DYNAMICS SIMULATION

Our hard disk molecular dynamics simulation is based on
a usual event-driven algorithm �33�. In the case of collision
between two gas particles the collision time can be obtained
analytically as given in �33�. However, since the Brownian
particle is subject to forces due to the piecewise-linear po-
tential U�x� and the external load F, the calculation of colli-
sion time between a Brownian particle and a gas particle is
not straightforward. Suppose that we know the relative posi-
tion r and relative velocity v of a Brownian particle with
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respect to a gas particle at time t0. We want to find the time
t= t0+�, at which they collide. The distance between two
particles at the moment of impact is d= �	+	B� /2 and hence

�r + v� +
1

2
a�2� = d , �A1�

where a is the constant acceleration of the Brownian particle.
�Note that the gas particle has no acceleration.� To find �, we
rewrite Eq. �A1� as a quartic equation for a�0,

�4 + A�3 + B�2 + C� + D = 0, �A2�

where A=4v ·a /a2, B=4�a ·r+v2� /a2, C=8r ·v /a2, and E
=4�r2−d2� /a2. Using a standard method �34�, we find four
solutions

� = −
A

4
+

1

2
�F � 	G + H�, � = −

A

4
−

1

2
�F � 	G − H� ,

�A3�

where

F = �	A2

4
− B + x , �A4�

G =
3

4
A2 − F2 − 2B , �A5�

H = �4AB − 8C − A3

4F
if F � 0,

2	x2 − 4D if F = 0,
� �A6�

and x is a real solution of an auxiliary equation,

x3 − Bx2 + �AC − 4D�x + 4BD − C2 − A2D = 0. �A7�

The analytical solutions to the cubic equation �A7� are given
in �35�.

The correct collision time corresponds to the smallest
positive real root of Eq. �A3�, if it exists. Despite having
analytical solutions, this algorithm occasionally fails, par-
ticularly when the acceleration a is significantly small, be-
cause some of the coefficients become extremely large, caus-
ing bit-off errors. To overcome this difficulty, we improve
the accuracy of the roots by iterating the Newton-Raphson

�35� steps a few times starting from the analytical solution to
Eq. �A7�. We found that the present algorithm is faster than a
direct solution of the quartic equation �A2� by the Newton-
Raphson method.

APPENDIX B: ANALYTICAL EXPRESSIONS
IN THE OVERDAMPED CASE

We derive analytical expressions for the steady state den-
sity P�x� and current J�x�. The Fokker-Planck equation for
steady states is simply dJ�x� /dx=0, where the particle cur-
rent is defined by

��x�J�x� = − �U��x� − F�P�x� −
d

dx
�T�x�P�x�� . �B1�

In our model, the Fokker-Planck equation for the ith cell is
given by

Pi��x� +
f i

Ti
Pi��x� = 0 �i = 1,2� , �B2�

where the net force is defined as f1,2=−F�2U0 /L. We con-
sider only weak external forces �F��Fc=2U0 /L so that it
does not destroy the potential barrier and hence we assume
f i�0. Thus we find the general solutions

P1�x� = C1 exp
−
f1x

T1
� + D1, �B3�

P2�x� = C2 exp
−
f2�x − L�

T2
� + D2, �B4�

where Ci and Di are the constants of integration. The corre-
sponding currents are Ji=−Difi /�i �i=1,2�. Since tempera-
ture and frictional coefficient are discontinuous at the cell
boundaries, the density does not have to be continuous.
However, the current must be continuous �J1=J2=J�. From
Eq. �B1�, we find the magnitude of the density discontinuity
as T1P1�L /2�=T2P2�L /2� and T1P1�0�=T2P2�L� �25�. These
boundary conditions along with normalization of the density
are sufficient to determine the integration constants. After
obtaining an expression for J and the integration constants,
we obtain a general expression for the average velocity �Eq.
�15�� from the general relation 
v�=JL. The particle density
in each cell is obtained from Eqs. �B3� and �B4�.
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